{ "id": "1403.0215", "version": "v2", "published": "2014-03-02T14:49:09.000Z", "updated": "2015-03-06T09:58:48.000Z", "title": "Hardy Type Inequalities for $Δ_λ$-Laplacians", "authors": [ "A. E. Kogoj", "S. Sonner" ], "categories": [ "math.AP" ], "abstract": "We derive Hardy type inequalities for a large class of sub-elliptic operators that belong to the class of $\\Delta_\\lambda$-Laplacians and find explicit values for the constants involved. Our results generalize previous inequalities obtained for Grushin type operators $$ \\Delta_{x}+ |x|^{2\\alpha}\\Delta_{y},\\qquad\\ (x,y)\\in\\mathbb{R}^{N_1}\\times\\mathbb{R}^{N_2},\\ \\alpha\\geq 0, $$ which were proved to be sharp.", "revisions": [ { "version": "v1", "updated": "2014-03-02T14:49:09.000Z", "abstract": "We derive Hardy type inequalities for a large class of sub-elliptic operators that belong to the class of $\\Delta_\\lambda$-Laplacians and find explicit values for the constants involved. Our results generalize previous inequalities obtained for Grushin type operators $$\\Delta_{x}+ |x|^{2\\alpha}\\Delta_{y},\\qquad\\ (x,y)\\in\\R^{N_1}\\times\\R^{N_2},\\ \\alpha\\geq 0,$$ which were proved to be sharp.", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2015-03-06T09:58:48.000Z" } ], "analyses": { "subjects": [ "35H20", "26D10", "35H10" ], "keywords": [ "laplacians", "derive hardy type inequalities", "grushin type operators", "sub-elliptic operators", "explicit values" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.0215K" } } }