{ "id": "1402.7326", "version": "v1", "published": "2014-02-28T17:29:26.000Z", "updated": "2014-02-28T17:29:26.000Z", "title": "Analysis of the parallel peeling algorithm: a short proof", "authors": [ "Pu Gao" ], "categories": [ "math.CO" ], "abstract": "A recent paper by Jiang, Mitzenmacher and Thaler upper bounded the number of rounds needed in a parallel peeling algorithm applied to a random hypergraph whose edge density is below the k-core emergence threshold. I gave a very short proof of their result in this note.", "revisions": [ { "version": "v1", "updated": "2014-02-28T17:29:26.000Z" } ], "analyses": { "keywords": [ "short proof", "k-core emergence threshold", "thaler upper", "random hypergraph", "edge density" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1402.7326G" } } }