{ "id": "1402.6838", "version": "v1", "published": "2014-02-27T09:50:24.000Z", "updated": "2014-02-27T09:50:24.000Z", "title": "Multi-bump solutions for a class of quasilinear problems involving variable exponents", "authors": [ "Claudianor O. Alves", "Marcelo C. Ferreira" ], "categories": [ "math.AP" ], "abstract": "We establish the existence of multi-bump solutions for the following class of quasilinear problems $$ - \\Delta_{ p(x) } u + \\big( \\lambda V(x) + Z(x) \\big) u ^{ p(x)-1 } = f(x,u) \\text{ in } \\mathbb R^N, \\, u \\ge 0 \\text{ in } \\mathbb R^N, $$ where the nonlinearity $ f \\colon \\mathbb R^N \\times \\mathbb R \\to \\mathbb R $ is a continuous function having a subcritical growth and potentials $ V, Z \\colon \\mathbb R^N \\to \\mathbb R $ are continuous functions verifying some hypotheses. The main tool used is the variational method.", "revisions": [ { "version": "v1", "updated": "2014-02-27T09:50:24.000Z" } ], "analyses": { "keywords": [ "quasilinear problems", "multi-bump solutions", "variable exponents", "continuous function", "main tool" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1402.6838A" } } }