{ "id": "1402.6817", "version": "v3", "published": "2014-02-27T08:03:41.000Z", "updated": "2015-01-26T01:56:54.000Z", "title": "Lower bounds on maximal determinants of binary matrices via the probabilistic method", "authors": [ "Richard P. Brent", "Judy-anne H. Osborn", "Warren D. Smith" ], "comment": "37 pages, 2 tables, 59 references. Added some references in v2, fixed typo in v3", "categories": [ "math.CO" ], "abstract": "Let $D(n)$ be the maximal determinant for $n \\times n$ $\\{\\pm 1\\}$-matrices, and ${\\mathcal R}(n) = D(n)/n^{n/2}$ be the ratio of $D(n)$ to the Hadamard upper bound. We give several new lower bounds on ${\\mathcal R}(n)$ in terms of $d$, where $n = h+d$, $h$ is the order of a Hadamard matrix, and $h$ is maximal subject to $h \\le n$. A relatively simple bound is \\[{\\mathcal R}(n) \\ge \\left(\\frac{2}{\\pi e}\\right)^{d/2} \\left(1 - d^2\\left(\\frac{\\pi}{2h}\\right)^{1/2}\\right) \\;\\text{ for all }\\; n \\ge 1.\\] An asymptotically sharper bound is \\[{\\mathcal R}(n) \\ge \\left(\\frac{2}{\\pi e}\\right)^{d/2} \\exp\\left(d\\left(\\frac{\\pi}{2h}\\right)^{1/2} + \\; O\\left(\\frac{d^{5/3}}{h^{2/3}}\\right)\\right).\\] We also show that \\[{\\mathcal R}(n) \\ge \\left(\\frac{2}{\\pi e}\\right)^{d/2}\\] if $n \\ge n_0$ and $n_0$ is sufficiently large, the threshold $n_0$ being independent of $d$, or for all $n\\ge 1$ if $0 \\le d \\le 3$ (which would follow from the Hadamard conjecture). The proofs depend on the probabilistic method, and generalise previous results that were restricted to the cases $d=0$ and $d=1$.", "revisions": [ { "version": "v2", "updated": "2014-03-13T23:02:38.000Z", "comment": "37 pages, 2 tables, 59 references. Added some references in v2", "journal": null, "doi": null }, { "version": "v3", "updated": "2015-01-26T01:56:54.000Z" } ], "analyses": { "subjects": [ "05B20", "05D40", "15A15", "15B34" ], "keywords": [ "lower bounds", "maximal determinant", "probabilistic method", "binary matrices", "hadamard upper bound" ], "note": { "typesetting": "TeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1402.6817B" } } }