{ "id": "1402.6758", "version": "v2", "published": "2014-02-27T01:12:41.000Z", "updated": "2014-09-10T13:21:25.000Z", "title": "Counting points on curves using a map to P^1", "authors": [ "Jan Tuitman" ], "categories": [ "math.NT", "math.AG" ], "abstract": "We introduce a new algorithm to compute the zeta function of a curve over a finite field. This method extends Kedlaya's algorithm to a very general class of curves using a map to the projective line. We develop all the necessary bounds, analyse the complexity of the algorithm and provide some examples computed with our implementation.", "revisions": [ { "version": "v1", "updated": "2014-02-27T01:12:41.000Z", "title": "Counting points on curves using a map to $\\mathbf{P}^1$", "abstract": "We introduce a new algorithm to compute the zeta function of a curve over a finite field. This method extends Kedlaya's algorithm to a very general class of curves using a map to the projective line. We develop all the necessary bounds and analyse the complexity of the algorithm.", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2014-09-10T13:21:25.000Z" } ], "analyses": { "keywords": [ "counting points", "method extends kedlayas algorithm", "finite field", "necessary bounds", "zeta function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1402.6758T" } } }