{ "id": "1402.6564", "version": "v1", "published": "2014-02-26T15:04:07.000Z", "updated": "2014-02-26T15:04:07.000Z", "title": "Bourgain-Delbaen $\\mathcal{L}^{\\infty}$-sums of Banach spaces", "authors": [ "Despoina Zisimopoulou" ], "comment": "29 pages, no figures", "categories": [ "math.FA" ], "abstract": "Motivated by a problem stated by S.A.Argyros and Th. Raikoftsalis, we introduce a new class of Banach spaces. Namely, for a sequence of separable Banach spaces $(X_n,\\|\\cdot\\|_n)_{n\\in\\mathbb{N}}$, we define the Bourgain Delbaen $\\mathcal{L}^{\\infty}$-sum of the sequence $(X_n,\\|\\cdot\\|_n)_{n\\in\\mathbb{N}}$ which is a Banach space $\\mathcal{Z}$ constructed with the Bourgain-Delbaen method. In particular, for every $1\\leq p<\\infty$, taking $X_n=\\ell_p$ for every $n\\in\\mathbb{N}$ the aforementioned space $\\mathcal{Z}_p$ is strictly quasi prime and admits $\\ell_p$ as a complemented subspace. We study the operators acting on $\\mathcal{Z}_p$ and we prove that for every $n\\in\\mathbb{N}$, the space $\\mathcal{Z}^n_p=\\sum_{i=1}^n\\oplus \\mathcal{Z}_p$ admits exactly $n+1$, pairwise not isomorphic, complemented subspaces.", "revisions": [ { "version": "v1", "updated": "2014-02-26T15:04:07.000Z" } ], "analyses": { "subjects": [ "46B03", "46B25", "46B28" ], "keywords": [ "complemented subspace", "separable banach spaces", "bourgain delbaen", "bourgain-delbaen method", "strictly quasi prime" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1402.6564Z" } } }