{ "id": "1402.6477", "version": "v1", "published": "2014-02-26T10:11:16.000Z", "updated": "2014-02-26T10:11:16.000Z", "title": "Laplacian perturbed by non-local operators", "authors": [ "Jie-Ming Wang" ], "categories": [ "math.PR" ], "abstract": "Suppose that $d\\geq 1$ and $0<\\beta<2$. We establish the existence and uniqueness of the fundamental solution $q^b(t, x, y)$ to the operator $\\L^b=\\Delta+S^b$, where $$ S^bf(x):=\\int_{\\R^d} \\left( f(x+z)-f(x)- \\nabla f(x) \\cdot z\\1_{\\{|z|\\leq 1\\}} \\right) \\frac{b(x, z)}{|z|^{d+\\beta}}dz$$ and $b(x, z)$ is a bounded measurable function on $\\R^d\\times \\R^d$ with $b(x, z)=b(x, -z)$ for $x, z\\in \\R^d$. We show that if for each $x\\in\\R^d, b(x, z) \\geq 0$ for a.e. $z\\in\\R^d$, then $q^b(t, x, y)$ is a strictly positive continuous function and it uniquely determines a conservative Feller process $X^b$, which has strong Feller property. Furthermore, sharp two-sided estimates on $q^b(t, x, y)$ are derived.", "revisions": [ { "version": "v1", "updated": "2014-02-26T10:11:16.000Z" } ], "analyses": { "subjects": [ "60J35", "47G20", "60J75", "47D07" ], "keywords": [ "non-local operators", "strong feller property", "fundamental solution", "conservative feller process" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1402.6477W" } } }