{ "id": "1402.6146", "version": "v2", "published": "2014-02-25T12:21:06.000Z", "updated": "2014-03-25T11:58:30.000Z", "title": "An Identity of Distributive Lattices", "authors": [ "Himadri Mukherjee" ], "categories": [ "math.CO" ], "abstract": "In a finite distributive lattice $\\L$ we define two functions $s(\\alpha)=|\\{\\delta \\in \\mathcal{L} | \\delta \\leq \\alpha \\}|$ and $l(\\alpha)=|\\{\\delta \\in \\mathcal{L} | \\delta \\geq \\alpha \\}|$. In this present article we prove that the sum of these two functions over a finite distributive lattice are equal. Using this identity we give a formula for the number of non-comparable pairs of elements in a finite distributive lattice.", "revisions": [ { "version": "v2", "updated": "2014-03-25T11:58:30.000Z" } ], "analyses": { "keywords": [ "finite distributive lattice", "non-comparable pairs" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1402.6146M" } } }