{ "id": "1402.6117", "version": "v1", "published": "2014-02-25T10:18:24.000Z", "updated": "2014-02-25T10:18:24.000Z", "title": "Spectral asymptotics of a strong $δ'$ interaction supported by a surface", "authors": [ "Pavel Exner", "Michal jex" ], "comment": "13 pages, no figures", "categories": [ "math-ph", "math.MP", "math.SP", "quant-ph" ], "abstract": "We derive asymptotic expansion for the spectrum of Hamiltonians with a strong attractive $\\delta'$ interaction supported by a smooth surface in $\\R^3$, either infinite and asymptotically planar, or compact and closed. Its second term is found to be determined by a Schr\\\"odinger type operator with an effective potential expressed in terms of the interaction support curvatures.", "revisions": [ { "version": "v1", "updated": "2014-02-25T10:18:24.000Z" } ], "analyses": { "subjects": [ "81Q10" ], "keywords": [ "spectral asymptotics", "interaction support curvatures", "smooth surface", "second term", "type operator" ], "tags": [ "journal article" ], "publication": { "doi": "10.1016/j.physleta.2014.06.017", "journal": "Physics Letters A", "year": 2014, "month": "Jun", "volume": 378, "number": "30-31", "pages": 2091 }, "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014PhLA..378.2091E" } } }