{ "id": "1402.5009", "version": "v1", "published": "2014-02-20T14:29:30.000Z", "updated": "2014-02-20T14:29:30.000Z", "title": "Long-time behavior of solutions of a BBM equation with generalized damping", "authors": [ "Jean-Paul Chehab", "Pierre Garnier", "Youcef Mammeri" ], "categories": [ "math.AP", "math.NA" ], "abstract": "We study the long-time behavior of the solution of a damped BBM equation $u_t + u_x - u_{xxt} + uu_x + \\mathscr{L}_{\\gamma}(u) = 0$. The proposed dampings $\\mathscr{L}_{\\gamma}$ generalize standards ones, as parabolic ($\\mathscr{L}_{\\gamma}(u)=-\\Delta u$) or weak damping ($\\mathscr{L}_{\\gamma}(u)=\\gamma u$) and allows us to consider a greater range. After establish the local well-posedness in the energy space, we investigate some numerical properties.", "revisions": [ { "version": "v1", "updated": "2014-02-20T14:29:30.000Z" } ], "analyses": { "keywords": [ "long-time behavior", "generalized damping", "damped bbm equation", "greater range", "local well-posedness" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1402.5009C" } } }