{ "id": "1402.4754", "version": "v2", "published": "2014-02-19T18:18:16.000Z", "updated": "2016-02-04T22:43:44.000Z", "title": "Solution to a problem of Bollobás and Häggkvist on Hamilton cycles in regular graphs", "authors": [ "Daniela Kühn", "Allan Lo", "Deryk Osthus", "Katherine Staden" ], "comment": "42 pages, to appear in JCTB", "categories": [ "math.CO" ], "abstract": "We prove that, for large $n$, every $3$-connected $D$-regular graph on $n$ vertices with $D \\geq n/4$ is Hamiltonian. This is best possible and confirms a conjecture posed independently by Bollob\\'as and H\\\"aggkvist in the 1970s. The proof builds on a structural decomposition result proved recently by the same authors.", "revisions": [ { "version": "v1", "updated": "2014-02-19T18:18:16.000Z", "comment": "41 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2016-02-04T22:43:44.000Z" } ], "analyses": { "keywords": [ "regular graph", "hamilton cycles", "structural decomposition result", "proof builds", "conjecture" ], "note": { "typesetting": "TeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1402.4754K" } } }