{ "id": "1402.4311", "version": "v3", "published": "2014-02-18T12:13:54.000Z", "updated": "2015-03-12T12:33:44.000Z", "title": "Strichartz inequalities for the Schrödinger equation with the full Laplacian on H-type groups", "authors": [ "Heping Liu", "Manli Song" ], "categories": [ "math.AP" ], "abstract": "We prove the dispersive estimates and Strichartz inequalities for the solution of the Schr\\\"{o}dinger equation related to the full Laplacian on H-type groups, by means of Besov spaces defined by a Littlewood-Paley decomposition related to the spectral of the full Laplacian. Let $p$ be the dimension of the center on those groups and we assume that $p>1$. This requires a careful analysis due also to the non-homogeneous nature of the full Laplacian.", "revisions": [ { "version": "v2", "updated": "2014-02-27T01:39:28.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v3", "updated": "2015-03-12T12:33:44.000Z" } ], "analyses": { "subjects": [ "22E25", "33C45", "35B65", "35J05" ], "keywords": [ "full laplacian", "strichartz inequalities", "h-type groups", "schrödinger equation", "dispersive estimates" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1402.4311L" } } }