{ "id": "1402.3894", "version": "v2", "published": "2014-02-17T05:36:29.000Z", "updated": "2014-03-31T05:45:08.000Z", "title": "Fisher Exponent from Pseudo-$ε$ Expansion", "authors": [ "A. I. Sokolov", "M. A. Nikitina" ], "comment": "14 pages, 4 tables, 1 figure; figure added, one number in Table IV corrected", "journal": "Phys. Rev. E 90, 012102 (2014)", "categories": [ "cond-mat.stat-mech", "hep-lat", "hep-ph", "hep-th" ], "abstract": "Critical exponent $\\eta$ for three-dimensional systems with $n$-vector order parameter is evaluated in the frame of pseudo-$\\epsilon$ expansion approach. Pseudo-$\\epsilon$ expansion ($\\tau$-series) for $\\eta$ found up to $\\tau^7$ term for $n$ = 0, 1, 2, 3 and within $\\tau^6$ order for general $n$ is shown to have a structure rather favorable for getting numerical estimates. Use of Pad\\'e approximants and direct summation of $\\tau$-series result in iteration procedures rapidly converging to the asymptotic values that are very close to most reliable numerical estimates of $\\eta$ known today. The origin of this fortune is discussed and shown to lie in general properties of the pseudo-$\\epsilon$ expansion machinery interfering with some peculiarities of the renormalization group expansion of $\\eta$.", "revisions": [ { "version": "v2", "updated": "2014-03-31T05:45:08.000Z" } ], "analyses": { "subjects": [ "05.70.Jk", "05.10.Cc", "64.60.ae" ], "keywords": [ "fisher exponent", "renormalization group expansion", "vector order parameter", "expansion machinery", "general properties" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review E", "doi": "10.1103/PhysRevE.90.012102", "year": 2014, "month": "Jul", "volume": 90, "number": 1, "pages": "012102" }, "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1281687, "adsabs": "2014PhRvE..90a2102S" } } }