{ "id": "1402.3879", "version": "v1", "published": "2014-02-17T03:26:24.000Z", "updated": "2014-02-17T03:26:24.000Z", "title": "A Semi-linear Shifted Wave Equation on the Hyperbolic Spaces with Application on a Quintic Wave Equation on ${\\mathbb R}^2$", "authors": [ "Ruipeng Shen", "Gigliola Staffilani" ], "comment": "51 pages, 9 figures, 4 tables", "categories": [ "math.AP" ], "abstract": "In this paper we consider a semi-linear, defocusing, shifted wave equation on the hyperbolic space \\[ \\partial_t^2 u - (\\Delta_{{\\mathbb H}^n} + \\rho^2) u = - |u|^{p-1} u, \\quad (x,t)\\in {\\mathbb H}^n \\times {\\mathbb R}; \\] and introduce a Morawetz-type inequality \\[ \\int_{-T_-}^{T_+} \\int_{{\\mathbb H}^n} |u|^{p+1} d\\mu dt < C E, \\] where $E$ is the energy. Combining this inequality with a well-posedness theory, we can establish a scattering result for solutions with initial data in $H^{1/2,1/2} \\times H^{1/2,-1/2}({\\mathbb H}^n)$ if $2 \\leq n \\leq 6$ and $10. \\]", "revisions": [ { "version": "v1", "updated": "2014-02-17T03:26:24.000Z" } ], "analyses": { "subjects": [ "35L71", "35L05" ], "keywords": [ "semi-linear shifted wave equation", "quintic wave equation", "hyperbolic space", "application", "morawetz-type inequality" ], "note": { "typesetting": "TeX", "pages": 51, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1402.3879S" } } }