{ "id": "1402.3095", "version": "v1", "published": "2014-02-13T11:39:13.000Z", "updated": "2014-02-13T11:39:13.000Z", "title": "Robust Solutions to Multi-Objective Linear Programs with Uncertain Data", "authors": [ "M. A. Goberna", "V. Jeyakumar", "G. Li", "J. Vicente-Pérez" ], "comment": "21 pages, Applied mathematics report UNSW", "categories": [ "math.OC" ], "abstract": "In this paper we examine multi-objective linear programming problems in the face of data uncertainty both in the objective function and the constraints. First, we derive a formula for radius of robust feasibility guaranteeing constraint feasibility for all possible uncertainties within a specified uncertainty set under affine data parametrization. We then present a complete characterization of robust weakly effcient solutions that are immunized against rank one objective matrix data uncertainty. We also provide classes of commonly used constraint data uncertainty sets under which a robust feasible solution of an uncertain multi-objective linear program can be numerically checked whether or not it is a robust weakly efficient solution.", "revisions": [ { "version": "v1", "updated": "2014-02-13T11:39:13.000Z" } ], "analyses": { "keywords": [ "uncertain data", "robust solutions", "constraint data uncertainty sets", "robust feasibility guaranteeing constraint feasibility", "uncertain multi-objective linear program" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1402.3095G" } } }