{ "id": "1402.2995", "version": "v1", "published": "2014-02-12T22:08:12.000Z", "updated": "2014-02-12T22:08:12.000Z", "title": "Nordhaus--Gaddum type inequalities for Laplacian and signless Laplacian eigenvalues", "authors": [ "F. Ashraf", "B. Tayfeh-Rezaie" ], "categories": [ "math.CO" ], "abstract": "Let $G$ be a graph with $n$ vertices. We denote the largest signless Laplacian eigenvalue of $G$ by $q_1(G)$ and Laplacian eigenvalues of $G$ by $\\mu_1(G)\\ge\\cdots\\ge\\mu_{n-1}(G)\\ge\\mu_n(G)=0$. It is a conjecture on Laplacian spread of graphs that $\\mu_1(G)-\\mu_{n-1}(G)\\le n-1$ or equivalently $\\mu_1(G)+\\mu_1(\\Gb)\\le2n-1$. We prove the conjecture for bipartite graphs. Also we show that for any bipartite graph $G$, $\\mu_1(G)\\mu_1(\\Gb)\\le n(n-1)$. Aouchiche and Hansen [A survey of Nordhaus--Gaddum type relations, Discrete Appl. Math. 161 (2013), 466--546] conjectured that %for any graph $G$ with $n$ vertices, $q_1(G)+q_1(\\Gb)\\le3n-4$ and $q_1(G)q_1(\\Gb)\\le2n(n-2)$. We prove the former and disprove the latter by constructing a family of graphs $H_n$ where $q_1(H_n)q_1(\\ov{H_n})$ is about $2.15n^2+O(n)$.", "revisions": [ { "version": "v1", "updated": "2014-02-12T22:08:12.000Z" } ], "analyses": { "subjects": [ "05C50" ], "keywords": [ "nordhaus-gaddum type inequalities", "bipartite graph", "largest signless laplacian eigenvalue", "nordhaus-gaddum type relations", "conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1402.2995A" } } }