{ "id": "1402.2403", "version": "v1", "published": "2014-02-11T08:56:16.000Z", "updated": "2014-02-11T08:56:16.000Z", "title": "Lower bounds for the approximation with variation-diminishing splines", "authors": [ "Johannes Nagler", "Paula Cerejeiras", "Brigitte Forster" ], "categories": [ "math.CA" ], "abstract": "We prove lower bounds for the approximation error of the variation-diminishing Schoenberg operator on the interval $[0,1]$ in terms of classical moduli of smoothness depending on the degree of the spline basis using a functional analysis based framework. Thereby, we characterize the spectrum of the Schoenberg operator and investigate the asymptotic behavior of its iterates. Finally, we prove the equivalence between the approximation error and the classical second order modulus of smoothness as an improved version of an open conjecture from 2002.", "revisions": [ { "version": "v1", "updated": "2014-02-11T08:56:16.000Z" } ], "analyses": { "subjects": [ "47A10", "41A25", "41A27", "47A58", "65D07", "65D17" ], "keywords": [ "lower bounds", "variation-diminishing splines", "approximation error", "classical second order modulus", "functional analysis" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1402.2403N" } } }