{ "id": "1402.1648", "version": "v1", "published": "2014-02-07T14:19:53.000Z", "updated": "2014-02-07T14:19:53.000Z", "title": "Spectral Expansions of Homogeneous and Isotropic Tensor-Valued Random Fields", "authors": [ "Anatoliy Malyarenko", "Martin Ostoja-Starzewski" ], "comment": "24 pages", "categories": [ "math.PR" ], "abstract": "We establish spectral expansions of homogeneous and isotropic random fields taking values in the $3$-dimensional Euclidean space $E^3$ and in the space $\\mathsf{S}^2(E^3)$ of symmetric rank $2$ tensors over $E^3$. The former is a model of turbulent fluid velocity, while the latter is a model for the random stress tensor or the random conductivity tensor. We found a link between the theory of random fields and the theory of finite-dimensional convex compacta.", "revisions": [ { "version": "v1", "updated": "2014-02-07T14:19:53.000Z" } ], "analyses": { "subjects": [ "60G60" ], "keywords": [ "isotropic tensor-valued random fields", "isotropic random fields", "finite-dimensional convex compacta", "dimensional euclidean space", "homogeneous" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1402.1648M" } } }