{ "id": "1402.1504", "version": "v1", "published": "2014-02-06T21:30:23.000Z", "updated": "2014-02-06T21:30:23.000Z", "title": "On a new type of the l-adic regulator for algebraic number fields", "authors": [ "Leonid Kuzmin" ], "categories": [ "math.NT" ], "abstract": "For an algebraic number field K such that prime l splits completely in K we define a regulator R(K) that characterize the subgroup of universal norms from the cyclotomic extension of K in the completed group of S-units of K, where S consists of all prime divisors of l. We prove that inequality R(K) not equals 0 follows from the l-adic Schanuel conjecture and holds true for some Abelian extensions of imaginary quadratic fields.", "revisions": [ { "version": "v1", "updated": "2014-02-06T21:30:23.000Z" } ], "analyses": { "keywords": [ "algebraic number field", "l-adic regulator", "imaginary quadratic fields", "l-adic schanuel conjecture", "abelian extensions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1402.1504K" } } }