{ "id": "1402.1305", "version": "v1", "published": "2014-02-06T10:33:13.000Z", "updated": "2014-02-06T10:33:13.000Z", "title": "Fisher Information and Exponential Families Parametrized by a Segment of Means", "authors": [ "Piotr Graczyk", "Salha Mamane" ], "categories": [ "math.PR" ], "abstract": "We consider natural and general exponential families $(Q_m)_{m\\in M}$ on $\\mathbb{R}^d$ parametrized by the means. We study the submodels $(Q_{\\theta m_1+(1-\\theta)m_2})_{\\theta\\in[0,1]}$ parametrized by a segment in the means domain, mainly from the point of view of the Fisher information. Such a parametrization allows for a parsimonious model and is particularly useful in practical situations when hesitating between two parameters $m_1$ and $m_2$. The most interesting examples are obtained when $\\mathbb{R}^d$ is a linear space of matrices, in particular for Gaussian and Wishart models.", "revisions": [ { "version": "v1", "updated": "2014-02-06T10:33:13.000Z" } ], "analyses": { "keywords": [ "fisher information", "general exponential families", "wishart models", "linear space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1402.1305G" } } }