{ "id": "1402.0742", "version": "v2", "published": "2014-02-04T14:22:44.000Z", "updated": "2014-02-10T20:37:50.000Z", "title": "Asymmetries in Asymptotic 3-fold Properties of Ergodic Actions", "authors": [ "V. V. Ryzhikov" ], "comment": "Ergodic theory, in Russian", "categories": [ "math.DS" ], "abstract": "We present: 1) a mixing $Z ^ 2$-action with the following asymmetry of multiple mixing property: for some commuting measure-preserving transformations $S$, $T$ and a sequence $n_j$ $$ \\lim_{j\\to \\infty}\\mu(A\\bigcap S^{-n_j}A\\bigcap T^{-n_j}A)=\\mu(A)^3$$ for all measurable sets $A$, but there is $A_0$, $\\mu(A_0)=\\frac 1 2$, such that $$ \\lim_{j\\to \\infty}\\mu(A_0\\bigcap S^{n_j}A_0\\bigcap T^{n_j}A_0)=0;$$ 2) $Z $-actions with the asymmetry of the partial multiple mixing and the partial multiple rigidity: $$ \\lim_{j\\to \\infty}\\mu(A\\bigcap T^{k_j}A\\bigcap T^{m_j}A)= \\frac23 \\mu(A)^3+\\frac13\\mu(A),$$ $$ \\lim_{j\\to \\infty}\\mu(A\\bigcap T^{-k_j}A\\bigcap T^{-m_j}A)= \\mu(A)^2;$$ 3) infinite transformations $T$ such that for all $A$, $\\mu(A)<\\infty$, $$\\lim_{j\\to \\infty}\\mu(A\\bigcap T^{k_j}A\\bigcap T^{m_j}A)= \\frac13\\mu(A)$$ and $$\\lim_{j\\to \\infty}\\mu(A\\bigcap T^{-k_j}A\\bigcap T^{-m_j}A)=0.$$", "revisions": [ { "version": "v2", "updated": "2014-02-10T20:37:50.000Z" } ], "analyses": { "keywords": [ "ergodic actions", "asymptotic", "partial multiple rigidity", "infinite transformations", "multiple mixing property" ], "note": { "typesetting": "TeX", "pages": 0, "language": "ru", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1402.0742R" } } }