{ "id": "1402.0727", "version": "v1", "published": "2014-02-04T13:30:18.000Z", "updated": "2014-02-04T13:30:18.000Z", "title": "Representations of affine superalgebras and mock theta functions II", "authors": [ "Victor G. Kac", "Minoru Wakimoto" ], "categories": [ "math.RT" ], "abstract": "We show that the normalized supercharacters of principal admissible modules, associated to each integrable atypical module over the affine Lie superalgebra $\\widehat{sl}_{2|1}$ can be modified, using Zwegers' real analytic corrections, to form an $SL_2(\\mathbf{Z})$-invariant family of functions. Using a variation of Zwegers' correction, we obtain a similar result for $\\widehat{osp}_{3|2}$. Applying the quantum Hamiltonian reduction, this leads to new families of positive energy modules over the $N=2$ (resp. $N=3$) superconformal algebras with central charge $c=3 (1-\\frac{2m+2}{M})$, where $m \\in \\mathbf{Z}_{\\geq 0}, M \\in \\mathbf{Z}_{\\geq 2}$, gcd$(2m+2,M)=1$ if $m>0$ (resp. $c=-3\\frac{2m+1}{M}$, where $m \\in \\mathbf{Z}_{\\geq 0}, M \\in \\mathbf{Z}_{\\geq 2}$ gcd$(4m +2, M) =1)$, whose modified supercharacters form an $SL_2(\\mathbf{Z})$-invariant family of functions.", "revisions": [ { "version": "v1", "updated": "2014-02-04T13:30:18.000Z" } ], "analyses": { "keywords": [ "mock theta functions", "affine superalgebras", "representations", "affine lie superalgebra", "real analytic corrections" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1280127, "adsabs": "2014arXiv1402.0727K" } } }