{ "id": "1402.0593", "version": "v1", "published": "2014-02-03T12:02:15.000Z", "updated": "2014-02-03T12:02:15.000Z", "title": "On the mass of the exterior blow-up points", "authors": [ "Samy Skander Bahoura" ], "comment": "arXiv admin note: substantial text overlap with arXiv:1309.1582, arXiv:1302.0657", "categories": [ "math.AP" ], "abstract": "We consider the following problem on open set $\\Omega$ of ${\\mathbb R}^2$: $$\\left \\{ \\begin {split} -\\Delta u_i & = V_i e^{u_i} \\,\\, &\\text{in} \\,\\, &\\Omega \\subset {\\mathbb R}^2, \\\\ u_i & = 0 \\,\\, & \\text{in} \\,\\, &\\partial \\Omega.\\end {split}\\right.$$ We assume that $ \\int_{\\Omega} e^{u_i} dy \\leq C$, and $ 0 \\leq V_i \\leq b < + \\infty$. On the other hand, if we assume that $V_i$ $s-$holderian with $1/2< s \\leq 1$, then each exterior blow-up point is simple. As application, we have a compactness result for the case when: $\\int_{\\Omega}V_i e^{u_i} dy \\leq 40\\pi-\\epsilon , \\,\\, \\epsilon >0$.", "revisions": [ { "version": "v1", "updated": "2014-02-03T12:02:15.000Z" } ], "analyses": { "keywords": [ "exterior blow-up point", "open set", "compactness result", "application" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1402.0593S" } } }