{ "id": "1402.0169", "version": "v1", "published": "2014-02-02T10:05:44.000Z", "updated": "2014-02-02T10:05:44.000Z", "title": "$a$-Points of the Riemann zeta-function on the critical line", "authors": [ "S. J. Lester" ], "comment": "20 pages, To appear in Int. Math. Res. Notices", "doi": "10.1093/imrn/rnt356", "categories": [ "math.NT" ], "abstract": "We investigate the proportion of the nontrivial roots of the equation $\\zeta (s)=a$, which lie on the line $\\Re s=1/2$ for $a \\in \\mathbb C$ not equal to zero. We show that at most one-half of these points lie on the line $\\Re s=1/2$. Moreover, assuming a spacing condition on the ordinates of zeros of the Riemann zeta-function, we prove that zero percent of the nontrivial solutions to $\\zeta (s)=a$ lie on the line $\\Re s=1/2$ for any nonzero complex number $a$.", "revisions": [ { "version": "v1", "updated": "2014-02-02T10:05:44.000Z" } ], "analyses": { "subjects": [ "11M06", "11M26", "60F05" ], "keywords": [ "riemann zeta-function", "critical line", "nonzero complex number", "nontrivial roots", "points lie" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1402.0169L" } } }