{ "id": "1401.8220", "version": "v1", "published": "2014-01-31T16:44:03.000Z", "updated": "2014-01-31T16:44:03.000Z", "title": "Convergence of the Crank-Nicolson-Galerkin finite element method for a class of nonlocal parabolic systems with moving boundaries", "authors": [ "Rui M. P. Almeida", "José C. M. Duque", "Jorge Ferreira", "Rui J. Robalo" ], "categories": [ "math.NA" ], "abstract": "The aim of this paper is to establish the convergence and error bounds to the fully discrete solution for a class of nonlinear systems of reaction-diffusion nonlocal type with moving boundaries, using a linearized Crank-Nicolson-Galerkin finite element method with polynomial approximations of any degree. A coordinate transformation which fixes the boundaries is used. Some numerical tests to compare our Matlab code with some existing moving finite elements methods are investigated.", "revisions": [ { "version": "v1", "updated": "2014-01-31T16:44:03.000Z" } ], "analyses": { "subjects": [ "35K55", "65M15", "65M60" ], "keywords": [ "nonlocal parabolic systems", "moving boundaries", "moving finite elements methods", "convergence", "linearized crank-nicolson-galerkin finite element method" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.8220A" } } }