{ "id": "1401.7300", "version": "v3", "published": "2014-01-28T19:17:54.000Z", "updated": "2014-06-24T10:28:19.000Z", "title": "$C^\\ast$-simple groups without free subgroups", "authors": [ "A. Yu. Olshanskii", "D. V. Osin" ], "categories": [ "math.GR", "math.OA" ], "abstract": "We construct first examples of non-trivial groups without non-cyclic free subgroups whose reduced $C^\\ast$-algebra is simple and has unique trace. This answers a question of de la Harpe. Both torsion and torsion free examples are provided. In particular, we show that the reduced $C^\\ast$-algebra of the free Burnside group $B(m,n)$ of rank $m\\ge 2$ and any sufficiently large odd exponent $n$ is simple and has unique trace.", "revisions": [ { "version": "v3", "updated": "2014-06-24T10:28:19.000Z" } ], "analyses": { "subjects": [ "20F06", "20F67", "22D25", "47L05" ], "keywords": [ "simple groups", "unique trace", "non-cyclic free subgroups", "torsion free examples", "free burnside group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.7300O" } } }