{ "id": "1401.7192", "version": "v2", "published": "2014-01-28T14:18:00.000Z", "updated": "2014-01-30T09:11:06.000Z", "title": "Functionals on Closed 2-Surfaces", "authors": [ "Metin Gurses" ], "comment": "19 pages", "categories": [ "math.DG", "hep-th", "math-ph", "math.MP" ], "abstract": "We show that the 2-torus in ${\\mathbb R}^3$ is a critical point of a sequence of functionals ${\\cal F}_{n}$ ($n=1,2,3, \\cdots$) defined over compact 2-surfaces in ${\\mathbb R}^3$. When the Lagrange function ${\\cal E}$ is a polynomial of degree $n$ of the mean curvature $H$ of the surface, the radii ($a,r$) of the 2-torus are related as $\\frac{a^2}{r^2}=\\frac{n^2-n}{n^2-n-1}, n \\ge 2$. If the Lagrange function depends on both mean and Gaussian curvatures, the 2- torus remains to be a critical point of ${\\cal F}_{n}$ without any constraints on the radii of the torus.", "revisions": [ { "version": "v2", "updated": "2014-01-30T09:11:06.000Z" } ], "analyses": { "keywords": [ "functionals", "critical point", "lagrange function depends", "torus remains", "mean curvature" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1279032 } } }