{ "id": "1401.6667", "version": "v2", "published": "2014-01-26T16:50:00.000Z", "updated": "2014-01-31T16:46:50.000Z", "title": "Ranks of Quotients, Remainders and $p$-Adic Digits of Matrices", "authors": [ "Mustafa Elsheikh", "Andy Novocin", "Mark Giesbrecht" ], "comment": "8 pages", "categories": [ "math.NT", "cs.SC" ], "abstract": "For a prime $p$ and a matrix $A \\in \\mathbb{Z}^{n \\times n}$, write $A$ as $A = p (A \\,\\mathrm{quo}\\, p) + (A \\,\\mathrm{rem}\\, p)$ where the remainder and quotient operations are applied element-wise. Write the $p$-adic expansion of $A$ as $A = A^{[0]} + p A^{[1]} + p^2 A^{[2]} + \\cdots$ where each $A^{[i]} \\in \\mathbb{Z}^{n \\times n}$ has entries between $[0, p-1]$. Upper bounds are proven for the $\\mathbb{Z}$-ranks of $A \\,\\mathrm{rem}\\, p$, and $A \\,\\mathrm{quo}\\, p$. Also, upper bounds are proven for the $\\mathbb{Z}/p\\mathbb{Z}$-rank of $A^{[i]}$ for all $i \\ge 0$ when $p = 2$, and a conjecture is presented for odd primes.", "revisions": [ { "version": "v2", "updated": "2014-01-31T16:46:50.000Z" } ], "analyses": { "subjects": [ "15A03", "15B33", "15B36", "11C20" ], "keywords": [ "adic digits", "upper bounds", "odd primes", "quotient operations", "adic expansion" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.6667E" } } }