{ "id": "1401.6461", "version": "v2", "published": "2014-01-24T21:06:40.000Z", "updated": "2014-01-28T19:24:49.000Z", "title": "Families of weighted sum formulas for multiple zeta values", "authors": [ "Li Guo", "Peng Lei", "Jianqiang Zhao" ], "comment": "The conjecture at the end is reformulated", "categories": [ "math.NT" ], "abstract": "Euler's sum formula and its multi-variable and weighted generalizations form a large class of the identities of multiple zeta values. In this paper we prove a family of identities involving Bernoulli numbers and apply them to obtain infinitely many weighted sum formulas for double zeta values and triple zeta values where the weight coefficients are given by symmetric polynomials. We give a general conjecture in arbitrary depth at the end of the paper.", "revisions": [ { "version": "v2", "updated": "2014-01-28T19:24:49.000Z" } ], "analyses": { "subjects": [ "11M32", "11B68" ], "keywords": [ "multiple zeta values", "weighted sum formulas", "eulers sum formula", "triple zeta values", "weighted generalizations form" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.6461G" } } }