{ "id": "1401.6390", "version": "v1", "published": "2014-01-24T16:18:44.000Z", "updated": "2014-01-24T16:18:44.000Z", "title": "Følner sequences and sum-free sets", "authors": [ "Sean Eberhard" ], "comment": "9 pages", "categories": [ "math.CO", "math.NT" ], "abstract": "Erd\\H{o}s showed that every set of $n$ positive integers contains a subset of size at least $n/(k+1)$ containing no solutions to $x_1 + \\cdots + x_k = y$. We prove that the constant $1/(k+1)$ here is best possible by showing that if $(F_m)$ is a multiplicative F{\\o}lner sequence in $\\mathbf{N}$ then $F_m$ has no $k$-sum-free subset of size greater than $(1/(k+1)+o(1))|F_m|$. This provides a new proof and a generalisation of a recent theorem of Eberhard, Green, and Manners.", "revisions": [ { "version": "v1", "updated": "2014-01-24T16:18:44.000Z" } ], "analyses": { "keywords": [ "sum-free sets", "følner sequences", "positive integers contains", "sum-free subset", "size greater" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.6390E" } } }