{ "id": "1401.5678", "version": "v2", "published": "2014-01-22T14:12:08.000Z", "updated": "2014-06-11T13:04:12.000Z", "title": "On the hyperbolicity of random graphs", "authors": [ "Dieter Mitche", "Pawel Pralat" ], "comment": "20 pages", "categories": [ "math.CO" ], "abstract": "Let $G=(V,E)$ be a connected graph with the usual (graph) distance metric $d:V \\times V \\to N \\cup \\{0 \\}$. Introduced by Gromov, $G$ is $\\delta$-hyperbolic if for every four vertices $u,v,x,y \\in V$, the two largest values of the three sums $d(u,v)+d(x,y), d(u,x)+d(v,y), d(u,y)+d(v,x)$ differ by at most $2\\delta$. In this paper, we determinate the value of this hyperbolicity for most binomial random graphs.", "revisions": [ { "version": "v2", "updated": "2014-06-11T13:04:12.000Z" } ], "analyses": { "keywords": [ "hyperbolicity", "binomial random graphs", "largest values", "distance metric", "connected graph" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.5678M" } } }