{ "id": "1401.4851", "version": "v1", "published": "2014-01-20T10:25:07.000Z", "updated": "2014-01-20T10:25:07.000Z", "title": "A characterization of hypergraphs that achieve equality in the Chvátal-McDiarmid Theorem", "authors": [ "Michael A. Henning", "Christian Löwenstein" ], "comment": "12 pages", "categories": [ "math.CO" ], "abstract": "For $k \\ge 2$, let $H$ be a $k$-uniform hypergraph on $n$ vertices and $m$ edges. The transversal number $\\tau(H)$ of $H$ is the minimum number of vertices that intersect every edge. Chv\\'{a}tal and McDiarmid [Combinatorica 12 (1992), 19--26] proved that $\\tau(H)\\le ( n + \\left\\lfloor \\frac k2 \\right\\rfloor m )/ ( \\left\\lfloor \\frac{3k}2 \\right\\rfloor )$. When $k = 3$, the connected hypergraphs that achieve equality in the Chv\\'{a}tal-McDiarmid Theorem were characterized by Henning and Yeo [J. Graph Theory 59 (2008), 326--348]. In this paper, we characterize the connected hypergraphs that achieve equality in the Chv\\'{a}tal-McDiarmid Theorem for $k = 2$ and for all $k \\ge 4$.", "revisions": [ { "version": "v1", "updated": "2014-01-20T10:25:07.000Z" } ], "analyses": { "subjects": [ "05C65" ], "keywords": [ "achieve equality", "chvátal-mcdiarmid theorem", "characterization", "connected hypergraphs", "graph theory" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.4851H" } } }