{ "id": "1401.4731", "version": "v2", "published": "2014-01-19T20:09:13.000Z", "updated": "2015-04-28T09:36:09.000Z", "title": "Universality of actions on $\\mathbb HP^2$", "authors": [ "Andrey Kustarev" ], "categories": [ "math.AT" ], "abstract": "We show that any eight-dimensional oriented manifold $M$ possessing smooth circle action with exactly three fixed points has the same weight system as some circle action on $\\mathbb HP^2$. It follows that Pontryagin numbers and equivariant cohomology of $M$ coincide to that of $\\mathbb HP^2$; if $M$ admits cellular decomposition of only three cells, it is diffeomorphic to $\\mathbb HP^2$.", "revisions": [ { "version": "v1", "updated": "2014-01-19T20:09:13.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2015-04-28T09:36:09.000Z" } ], "analyses": { "keywords": [ "universality", "admits cellular decomposition", "possessing smooth circle action", "eight-dimensional oriented manifold", "equivariant cohomology" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.4731K" } } }