{ "id": "1401.4549", "version": "v1", "published": "2014-01-18T15:45:38.000Z", "updated": "2014-01-18T15:45:38.000Z", "title": "Non-stability of Paneitz-Branson equations in arbitrary dimensions", "authors": [ "Laurent Bakri", "Jean-Baptiste Castéras" ], "categories": [ "math.AP" ], "abstract": "Let $(M,g)$ be a compact riemannian manifold of dimension $n\\geq 5$. We are interested in the stability of a slighly subcritical Paneitz-Branson type equation on $M$. Assuming that there exists a positive nondegenerate solution of the critical equation and under suitable conditions, we prove that this equation is not stable for all $n\\geq 5$.", "revisions": [ { "version": "v1", "updated": "2014-01-18T15:45:38.000Z" } ], "analyses": { "keywords": [ "arbitrary dimensions", "paneitz-branson equations", "non-stability", "compact riemannian manifold", "slighly subcritical paneitz-branson type equation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.4549B" } } }