{ "id": "1401.4296", "version": "v2", "published": "2014-01-17T10:36:38.000Z", "updated": "2014-09-11T09:07:40.000Z", "title": "Values of twisted Artin $L$-functions", "authors": [ "Kenneth Ward" ], "comment": "6 pages. minor changes. To appear in Archiv der Mathematik (2014)", "categories": [ "math.NT" ], "abstract": "This note gives a simple proof that certain values of Artin's $L$-function, for a representation $\\rho$ with character $\\chi_\\rho$, are stable under twisting by an even Dirichlet character $\\chi$, up to an element generated over $\\mathbb Q$ by the values of $\\chi$ and $\\chi_\\rho$, and a product with a power of the Gauss sum $\\tau(\\chi)$ equal to the dimension of $\\rho$. This extends a result due to J. Coates and S. Lichtenbaum.", "revisions": [ { "version": "v1", "updated": "2014-01-17T10:36:38.000Z", "title": "Values of twists by Dirichlet characters of Artin $L$-functions", "comment": "8 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-09-11T09:07:40.000Z" } ], "analyses": { "subjects": [ "11L05", "11F67" ], "keywords": [ "dirichlet character", "simple proof", "gauss sum", "representation", "lichtenbaum" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.4296W" } } }