{ "id": "1401.3628", "version": "v1", "published": "2014-01-15T15:32:05.000Z", "updated": "2014-01-15T15:32:05.000Z", "title": "On algebraic independence of certain multizeta values in characteristic p", "authors": [ "Yoshinori Mishiba" ], "comment": "14 pages", "categories": [ "math.NT" ], "abstract": "In this paper, we study multizeta values over function fields in characteristic $p$. For each $d \\geq 2$, we show that when the constant field has cardinality $> 2$, the field generated by all multizeta values of depth $d$ is of infinite transcendence degree over the field generated by all single zeta values. As a special case, this gives an affirmative answer to the function field analogue of a question of Y.\\ Andr\\'e.", "revisions": [ { "version": "v1", "updated": "2014-01-15T15:32:05.000Z" } ], "analyses": { "subjects": [ "11J93", "11M38", "11G09" ], "keywords": [ "algebraic independence", "characteristic", "single zeta values", "study multizeta values", "function field analogue" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.3628M" } } }