{ "id": "1401.3601", "version": "v2", "published": "2014-01-15T14:18:22.000Z", "updated": "2015-10-19T18:56:57.000Z", "title": "Construction of some perfect integral lattices with minimum 4", "authors": [ "Roland Bacher" ], "comment": "Final version, to appear in Journal de Th{\\'e}orie des Nombres de Bordeaux", "categories": [ "math.CO", "math.NT" ], "abstract": "We construct several families of perfect sublattices with minimum $4$ of $\\mathbb Z^d$. In particular, the number of $d-$dimensional perfect integral lattices with minimum $4$ grows faster than $d^k$ for every exponent $k$.", "revisions": [ { "version": "v1", "updated": "2014-01-15T14:18:22.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2015-10-19T18:56:57.000Z" } ], "analyses": { "keywords": [ "construction", "dimensional perfect integral lattices", "grows faster", "perfect sublattices" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.3601B" } } }