{ "id": "1401.3553", "version": "v1", "published": "2014-01-15T11:58:22.000Z", "updated": "2014-01-15T11:58:22.000Z", "title": "A note on the arithmetic properties of Stern Polynomials", "authors": [ "Maciej Gawron" ], "comment": "9 pages, submitted", "categories": [ "math.CO", "math.NT" ], "abstract": "We investigate the Stern polynomials defined by $B_0 ( t ) =0,B_1 ( t ) =1$, and for $n \\geq 2$ by the recurrence relations $B_{2n}( t) =tB_{n}( t) ,$ $B_{2n+1}( t) =B_n( t) +B_{n+1}( t) $. We prove that all possible rational roots of that polynomials are $0,-1,-1/2,-1/3$. We give complete characterization of $n$ such that $deg( B_n) = deg( B_{n+1}) $ and $deg( B_n) =deg( B_{n+1}) =deg( B_{n+2}) $. Moreover, we present some result concerning reciprocal Stern polynomials.", "revisions": [ { "version": "v1", "updated": "2014-01-15T11:58:22.000Z" } ], "analyses": { "keywords": [ "arithmetic properties", "result concerning reciprocal stern polynomials", "rational roots", "recurrence relations", "complete characterization" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.3553G" } } }