{ "id": "1401.3321", "version": "v1", "published": "2014-01-14T20:27:05.000Z", "updated": "2014-01-14T20:27:05.000Z", "title": "The $(q,μ,ν)$-Boson process and $(q,μ,ν)$-TASEP", "authors": [ "Ivan Corwin" ], "comment": "18 pages, 2 figures", "categories": [ "math.PR", "cond-mat.stat-mech", "math-ph", "math.MP", "math.QA" ], "abstract": "We prove a intertwining relation (or Markov duality) between the $(q,\\mu,\\nu)$-Boson process and $(q,\\mu,\\nu)$-TASEP, two discrete time Markov chains introduced by Povolotsky. Using this and a variant of the coordinate Bethe ansatz we compute nested contour integral formulas for expectations of a family of observables of the $(q,\\mu,\\nu)$-TASEP when started from step initial data. We then utilize these to prove a Fredholm determinant formula for distribution of the location of any given particle.", "revisions": [ { "version": "v1", "updated": "2014-01-14T20:27:05.000Z" } ], "analyses": { "keywords": [ "boson process", "discrete time markov chains", "coordinate bethe ansatz", "nested contour integral formulas", "step initial data" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.3321C" } } }