{ "id": "1401.3072", "version": "v2", "published": "2014-01-14T05:31:05.000Z", "updated": "2014-05-02T11:57:30.000Z", "title": "On an invariance property of the space of smooth vectors", "authors": [ "Karl-Hermann Neeb", "Hadi Salmasian", "Christoph Zellner" ], "comment": "Accepted by Kyoto Journal of Math", "categories": [ "math.RT", "math.FA" ], "abstract": "Let $(\\pi, \\mathcal H)$ be a continuous unitary representation of the (infinite dimensional) Lie group $G$ and $\\gamma \\: \\mathbb R \\to \\mathrm{Aut}(G)$ define a continuous action of $\\mathbb R$ on $G$. Suppose that $\\pi^\\#(g,t) = \\pi(g) U_t$ defines a continuous unitary representation of the semidirect product group $G \\rtimes_\\gamma \\mathbb R$. The first main theorem of the present note provides criteria for the invariance of the space $\\mathcal H^\\infty$ of smooth vectors of $\\pi$ under the operators $U_f = \\int_\\mathbb R f(t)U_t\\, dt$ for $f \\in L^1(\\mathbb R)$, resp., $f \\in \\mathcal S(\\mathbb R)$. Using this theorem we show that, for suitably defined spectral subspaces $\\mathfrak g_{\\mathbb C}(E)$, $E \\subseteq \\mathbb R$, in the complexified Lie algebra $\\mathfrak g_{\\mathbb C}$, and $\\mathcal H^\\infty(F)$, $F\\subseteq \\mathbb R$, for $U$ in $\\mathcal H^\\infty$, we have \\[ \\mathsf{d}\\pi(\\mathfrak g_{\\mathbb C}(E)) \\mathcal H^\\infty(F) \\subseteq \\mathcal H^\\infty(E + F).\\]", "revisions": [ { "version": "v2", "updated": "2014-05-02T11:57:30.000Z" } ], "analyses": { "subjects": [ "22E65", "22E45", "17B65" ], "keywords": [ "smooth vectors", "invariance property", "continuous unitary representation", "first main theorem", "semidirect product group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.3072N" } } }