{ "id": "1401.2971", "version": "v1", "published": "2014-01-13T20:18:52.000Z", "updated": "2014-01-13T20:18:52.000Z", "title": "Heat content and small time asymptotics for Schrödinger operators on $R^d$", "authors": [ "Luis Acuña Valverde", "Rodrigo Bañuelos" ], "categories": [ "math.PR", "math.CA", "math.SP" ], "abstract": "This paper studies the heat content} for Schr\\\"odinger operators of the fractional Laplacian $(-\\Delta)^{\\alpha/2}$, $0<\\alpha\\leq 2$ in $R^d$, $d\\geq 1$. Employing probabilistic and analytic techniques, a small time asymptotic expansion formula is given and the \"heat content invariants\" are identified. These results are new even in the case of the Laplacian, $\\alpha=2$.", "revisions": [ { "version": "v1", "updated": "2014-01-13T20:18:52.000Z" } ], "analyses": { "keywords": [ "schrödinger operators", "small time asymptotic expansion formula", "heat content invariants", "fractional laplacian", "paper studies" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.2971A" } } }