{ "id": "1401.2893", "version": "v1", "published": "2014-01-13T16:10:01.000Z", "updated": "2014-01-13T16:10:01.000Z", "title": "Recovery of bivariate band limited functions using scattered translates of the Poisson kernel", "authors": [ "Jeff Ledford" ], "comment": "12 pages", "categories": [ "math.FA" ], "abstract": "This paper continues the study of interpolation operators on scattered data. We introduce the Poisson interpolation operator and prove various properties. The main result concerns functions in the Paley-Wiener space $PW_{B_\\beta}$, and shows that one may recover these functions from their samples on a complete interpolating sequence for $[-\\delta,\\delta]^2$ by using the Poisson interpolation operator, provided that $0<\\beta < (3-\\sqrt{8})\\delta$.", "revisions": [ { "version": "v1", "updated": "2014-01-13T16:10:01.000Z" } ], "analyses": { "subjects": [ "41A63", "41A05" ], "keywords": [ "bivariate band limited functions", "poisson kernel", "scattered translates", "poisson interpolation operator", "main result concerns functions" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.2893L" } } }