{ "id": "1401.2869", "version": "v1", "published": "2014-01-13T15:18:34.000Z", "updated": "2014-01-13T15:18:34.000Z", "title": "A basis of the group of primitive almost pythagorean triples", "authors": [ "Nikolai A. Krylov" ], "comment": "10 pages, continuation of arXiv:1107.2860", "categories": [ "math.NT" ], "abstract": "Let $m$ be a fixed square-free positive integer, then equivalence classes of solutions of Diophantine equation $x^2+m\\cdot y^2=z^2$ form an infinitely generated abelian group under the operation induced by the complex multiplication. A basis of this group is constructed here using prime ideals and the ideal class group of the field $\\mathbb Q (\\sqrt{-m})$.", "revisions": [ { "version": "v1", "updated": "2014-01-13T15:18:34.000Z" } ], "analyses": { "subjects": [ "11R04", "11R11", "20F05" ], "keywords": [ "pythagorean triples", "ideal class group", "equivalence classes", "diophantine equation", "infinitely generated abelian group" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }