{ "id": "1401.2623", "version": "v1", "published": "2014-01-12T13:13:42.000Z", "updated": "2014-01-12T13:13:42.000Z", "title": "A quantitative modulus of continuity for the two-phase Stefan problem", "authors": [ "Paolo Baroni", "Tuomo Kuusi", "José Miguel Urbano" ], "comment": "23 pages", "categories": [ "math.AP" ], "abstract": "We derive the quantitative modulus of continuity $$ \\omega(r)=\\left[ p+\\ln \\left( \\frac{r_0}{r} \\right) \\right]^{-\\alpha (n,p)}, $$ which we conjecture to be optimal, for solutions of the $p$-degenerate two-phase Stefan problem. Even in the classical case $p=2$, this represents a twofold improvement with respect to the 1984 state-of-the-art result by DiBenedetto and Friedman [J. reine angew. Math., 1984], in the sense that we discard one logarithm iteration and obtain an explicit value for the exponent $\\alpha (n,p)$.", "revisions": [ { "version": "v1", "updated": "2014-01-12T13:13:42.000Z" } ], "analyses": { "subjects": [ "35B65", "35K65", "80A22" ], "keywords": [ "quantitative modulus", "continuity", "degenerate two-phase stefan problem", "reine angew", "state-of-the-art result" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s00205-014-0762-9", "journal": "Archive for Rational Mechanics and Analysis", "year": 2014, "month": "Nov", "volume": 214, "number": 2, "pages": 545 }, "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014ArRMA.214..545B" } } }