{ "id": "1401.2310", "version": "v1", "published": "2014-01-10T12:35:40.000Z", "updated": "2014-01-10T12:35:40.000Z", "title": "The sum of divisors of a quadratic form", "authors": [ "Lilu Zhao" ], "comment": "Accepted by Acta Arithmetica", "categories": [ "math.NT" ], "abstract": "We study the sum of divisors of the quadratic form $m_1^2+m_2^2+m_3^2$. Let $$S_3(X)=\\sum_{1\\le m_1,m_2,m_3\\le X}\\tau(m_1^2+m_2^2+m_3^2).$$ We obtain the asymptotic formula $$S_3(X)=C_1X^3\\log X+ C_2X^3+O(X^2\\log^7 X),$$ where $C_1,C_2$ are two constants. This improves upon the error term $O_\\varepsilon(X^{8/3+\\varepsilon})$ obtained by Guo and Zhai.", "revisions": [ { "version": "v1", "updated": "2014-01-10T12:35:40.000Z" } ], "analyses": { "keywords": [ "quadratic form", "error term", "asymptotic formula" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.2310Z" } } }