{ "id": "1401.2225", "version": "v1", "published": "2014-01-10T03:51:43.000Z", "updated": "2014-01-10T03:51:43.000Z", "title": "A combinatorial geometric Satake equivalence", "authors": [ "Joel Kamnitzer" ], "categories": [ "math.RT" ], "abstract": "The geometric Satake correspondence provides an equivalence of categories between the Satake category of spherical perverse sheaves on the affine Grassmannian and the category of representations of the dual group. In this note, we define a combinatorial version of the Satake category using irreducible components of fibres of the convolution morphism. We then prove an equivalence of coboundary categories between this combinatorial Satake category and the category of crystals of the dual group.", "revisions": [ { "version": "v1", "updated": "2014-01-10T03:51:43.000Z" } ], "analyses": { "keywords": [ "combinatorial geometric satake equivalence", "dual group", "combinatorial satake category", "geometric satake correspondence", "spherical perverse sheaves" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.2225K" } } }