{ "id": "1401.2055", "version": "v1", "published": "2014-01-09T16:19:35.000Z", "updated": "2014-01-09T16:19:35.000Z", "title": "Approximation by Genuine $q$-Bernstein-Durrmeyer Polynomials in Compact Disks in the case $q > 1$", "authors": [ "Nazim I. Mahmudov" ], "categories": [ "math.AP" ], "abstract": "This paper deals with approximating properties of the newly defined $q$-generalization of the genuine Bernstein-Durrmeyer polynomials in the case $q>1$, whcih are no longer positive linear operators on $C[0,1]$. Quantitative estimates of the convergence, the Voronovskaja type theorem and saturation of convergence for complex genuine $q$-Bernstein-Durrmeyer polynomials attached to analytic functions in compact disks are given. In particular, it is proved that for functions analytic in $\\left\\{ z\\in\\mathbb{C}:\\left\\vert z\\right\\vert q,$ the rate of approximation by the genuine $q$-Bernstein-Durrmeyer polynomials ($q>1$) is of order $q^{-n}$ versus $1/n$ for the classical genuine Bernstein-Durrmeyer polynomials. We give explicit formulas of Voronovskaja type for the genuine $q$-Bernstein-Durrmeyer for $q>1$.", "revisions": [ { "version": "v1", "updated": "2014-01-09T16:19:35.000Z" } ], "analyses": { "subjects": [ "41A35", "30E10", "F.2.2", "I.2.7" ], "keywords": [ "compact disks", "approximation", "longer positive linear operators", "voronovskaja type theorem", "classical genuine bernstein-durrmeyer polynomials" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.2055M" } } }