{ "id": "1401.1708", "version": "v1", "published": "2014-01-08T14:35:01.000Z", "updated": "2014-01-08T14:35:01.000Z", "title": "A Lagrangian for Hamiltonian vector fields on singular Poisson manifolds", "authors": [ "Yahya Turki" ], "comment": "27 pages", "categories": [ "math.DG" ], "abstract": "On a manifold equipped with a bivector field, we introduce for every Hamiltonian a Lagrangian on paths valued in the cotangent space whose stationary points projects onto Hamiltonian vector fields. We show that the remaining components of those stationary points tell whether the bivector field is Poisson or at least defines an integrable distribution - a class of bivector fields generalizing twisted Poisson structures that we study in detail.", "revisions": [ { "version": "v1", "updated": "2014-01-08T14:35:01.000Z" } ], "analyses": { "subjects": [ "37J05", "53D17" ], "keywords": [ "hamiltonian vector fields", "singular poisson manifolds", "lagrangian", "stationary points tell", "stationary points projects" ], "publication": { "doi": "10.1016/j.geomphys.2014.11.015", "journal": "Journal of Geometry and Physics", "year": 2015, "month": "Apr", "volume": 90, "pages": 71 }, "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015JGP....90...71T" } } }