{ "id": "1401.1613", "version": "v1", "published": "2014-01-08T08:59:50.000Z", "updated": "2014-01-08T08:59:50.000Z", "title": "The effective cone of the moduli space of sheaves on the plane", "authors": [ "Izzet Coskun", "Jack Huizenga", "Matthew Woolf" ], "comment": "37 pages, 6 figures, comments welcome!", "categories": [ "math.AG", "math.NT" ], "abstract": "We compute the cone of effective divisors on any moduli space of semistable sheaves on the plane. The computation hinges on finding a good resolution of a general stable sheaf. This resolution is determined by Bridgeland stability and arises from a well-chosen Beilinson spectral sequence. The existence of a good choice of spectral sequence depends on remarkable number-theoretic properties of the slopes of exceptional bundles.", "revisions": [ { "version": "v1", "updated": "2014-01-08T08:59:50.000Z" } ], "analyses": { "subjects": [ "14J60", "14E30", "14D20", "13D02" ], "keywords": [ "moduli space", "effective cone", "well-chosen beilinson spectral sequence", "spectral sequence depends", "resolution" ], "note": { "typesetting": "TeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.1613C" } } }