{ "id": "1401.1020", "version": "v1", "published": "2014-01-06T09:40:17.000Z", "updated": "2014-01-06T09:40:17.000Z", "title": "Gradient entropy estimate and convergence of a semi-explicit scheme for diagonal hyperbolic systems", "authors": [ "Laurent Monasse", "Régis Monneau" ], "comment": "22 pages", "categories": [ "math.NA" ], "abstract": "In this paper, we consider diagonal hyperbolic systems with monotone continuous initial data. We propose a natural semi-explicit and upwind first order scheme. Under a certain non-negativity condition on the Jacobian matrix of the velocities of the system, there is a gradient entropy estimate for the hyperbolic system. We show that our scheme enjoys a similar gradient entropy estimate at the discrete level. This property allows us to prove the convergence of the scheme.", "revisions": [ { "version": "v1", "updated": "2014-01-06T09:40:17.000Z" } ], "analyses": { "subjects": [ "65M12", "35L60", "35L45", "35A02" ], "keywords": [ "diagonal hyperbolic systems", "semi-explicit scheme", "convergence", "similar gradient entropy estimate", "upwind first order scheme" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.1020M" } } }